Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Base de datos
Tópicos
Tipo del documento
Intervalo de año
1.
Pathogens ; 11(12)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: covidwho-2163548

RESUMEN

Porcine epidemic diarrhea virus (PEDV), a highly pathogenic enteric coronavirus, is regarded as one of the most severe porcine pathogens. To date, there are still no commercial vaccines or drugs that can provide full protection against the epidemic strains. A better understanding of the subcellular location of individual proteins could benefit from studying the protein functions and mechanisms of how the virus regulates key cellular processes, finally leading to the development of antiviral agents. In this study, we characterized the subcellular localization of PEDV proteins using multi-labeled fluorescent immunocytochemistry. As a result, 11 proteins showed cytoplasmic distribution and 10 proteins showed both cytoplasmic and nuclear distribution. Furthermore, we demonstrated that four proteins (Nsp3, Nsp4, Nsp6, and S1) were co-localized in the endoplasmic reticulum (ER), while four proteins (Nsp2, S2, N, and ORF3) were partially observed in the ER, two proteins (E and M) were co-localized in the Golgi apparatus, and two proteins (Nsp2 and E) were partially co-localized with the mitochondria. These viral proteins may perform specific functions at specific cellular locations. Together, these results describe a subcellular localization map of PEDV proteins, which will help to characterize the functions of these proteins in the future.

2.
Front Pharmacol ; 13: 879733, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1862647

RESUMEN

Porcine epidemic diarrhea virus (PEDV) is an alphacoronavirus (α-CoV) that causes high mortality in suckling piglets, leading to severe economic losses worldwide. No effective vaccine or commercial antiviral drug is readily available. Several replicative enzymes are responsible for coronavirus replication. In this study, the potential candidates targeting replicative enzymes (PLP2, 3CLpro, RdRp, NTPase, and NendoU) were screened from 187,119 compounds in ZINC natural products library, and seven compounds had high binding potential to NTPase and showed drug-like property. Among them, ZINC12899676 was identified to significantly inhibit the NTPase activity of PEDV by targeting its active pocket and causing its conformational change, and ZINC12899676 significantly inhibited PEDV replication in IPEC-J2 cells. It first demonstrated that ZINC12899676 inhibits PEDV replication by targeting NTPase, and then, NTPase may serve as a novel target for anti-PEDV.

3.
Front Pharmacol ; 12: 699949, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1405424

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or COVID-19 infection is the cause of the ongoing global pandemic. Mortality from COVID-19 infection is particularly high in patients with cardiovascular diseases. In addition, COVID-19 patients with preexisting cardiovascular comorbidities have a higher risk of death. Main cardiovascular complications of COVID-19 are myocardial infarction, myocarditis, acute myocardial injury, arrhythmias, heart failure, stroke, and venous thromboembolism. Therapeutic interventions in terms of drugs for COVID-19 have many cardiac adverse effects. Here, we review the relative therapeutic efficacy and adverse effects of anti-COVID-19 drugs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA